¨wR@iqóQNj@Kâč
iÓj
PBŹŃÍVoXLÚĚĘčCúąĚŹŃĚÝĹťčľÜˇBąÍżÝsÂ
iÖděKvjĹs˘ÜˇB60ŞÔCKâčđx[XĆľ˝4čC1č25_šB
˝žľC|[gŰčđŰľ˝ÍC|[g_đtÁˇéŞ čܡB
QBÄąÍs˘ÜšńB|[gÉćéăÖ[uŕ čÜšńB
RBąúCĚRĹČľ˝ęÉÍCłąŰĹÇąĚ蹍đľÄşł˘B
iLčĆFßçę˝ęÉÍCÇąđóŻçęܡBÇąŕżÝsÂĹs˘ÜˇB
@XPWúiŘjxuš
9/17`9/25ĚÔÉLMSăĹâuđs˘ÜˇBLMSu`żĚKâčđsÁÄCúŔŕÉLMS
ăĹ|[gńoľÄžł˘B
iâuŰčj@
A = i + 2j + 3kCB = 4i + 5j + 6kĚĆŤCČşĚlđßČł˘B
(1) A
(2) B
(3) A + B
(4) A - B
@XQTúiŘj@
PBA = Axi + Ayj + AzkCB = Bxi + Byj + Bzk ÉÎľÄCXJ[ĎŞ
AEB = AxBx + AyBy + AzBz
Ĺ éđąoľČł˘iRBiTjĚąŤđs¤jB
QBA = Axi + Ayj + AzkCB = Bxi + Byj + Bzk ÉÎľÄCxNgĎŞ
A~B = (AyBz - AzBy)i + (AzBx - AxBz)j + (AxBy - AyBx)k
Ĺ éđąoľČł˘iSBiTjĚąŤđs¤jB
RBA = i + 2j + 3kCB = 4i + 5j + 6kĚĆŤCČşĚlđßČł˘B
(1) AEB
(2) ACBĚȡpđĆĆľ˝ĆŤĚCcosĆ@iŚÍLťľČÄǢj
(3) A~B
(4) B~A
(5) AE(A~B)
PO@QúiŘj@
(1) dCĘĚľ˘QÂĚŃdĚŞ1 (m)ŁęĢéĆŤCźŇĚÔÉ10 (N)ĚËÍŞ˘˝B
ŃdĚĚdCĘđßČł˘B
(2) f´qjidCĘ+1.602~10-19 (C)j2ÂŞ0.5~10-10(m)ŁęĢéĆŤCąęçĚÔÉ
ěpˇéN[ÍĚ即đßČł˘B
PO@XúiŘj
(1) 即2~104 (N/C)ĚăŠçşÉüФdęĹC1ÂĚdqŞóŻéÍĚüŤĆ即
đßČł˘B
(2) 1ÂĚdqŞC^óĹ0.1(m)Łę˝ĘuÉěédęĚ即đßČł˘B
POPUúiŘj
(1) 1ÂĚdqÉüédCÍüđßČł˘B
(2) ˝s˝ÂÉťęźęCʧx+ĐC-ĐĚd×đuB˝ÂÔĚdęĚ即͢çŠB
Ü˝CÂĚOĹÍCdęĚ即͢çŠB
Kđ@ińXVÜĹfÚj